1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
hannelorewendt edited this page 2025-02-06 16:15:01 +01:00
This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.


Today, we are thrilled to reveal that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, along with the distilled versions ranging from 1.5 to 70 billion parameters to build, experiment, and properly scale your generative AI concepts on AWS.

In this post, we demonstrate how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to release the distilled versions of the models too.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language design (LLM) established by DeepSeek AI that uses support discovering to enhance thinking abilities through a multi-stage training process from a DeepSeek-V3-Base structure. An essential distinguishing feature is its reinforcement knowing (RL) action, which was utilized to improve the design's actions beyond the basic pre-training and fine-tuning process. By incorporating RL, DeepSeek-R1 can adjust more efficiently to user feedback and goals, ultimately boosting both importance and clearness. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) technique, indicating it's geared up to break down intricate queries and factor through them in a detailed manner. This directed reasoning procedure permits the design to produce more accurate, transparent, and detailed answers. This design combines RL-based fine-tuning with CoT capabilities, aiming to create structured reactions while concentrating on interpretability and user interaction. With its wide-ranging abilities DeepSeek-R1 has actually recorded the market's attention as a flexible text-generation model that can be incorporated into various workflows such as agents, sensible thinking and information analysis jobs.

DeepSeek-R1 uses a Mix of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture enables activation of 37 billion criteria, enabling efficient inference by routing inquiries to the most pertinent expert "clusters." This approach allows the design to specialize in different problem domains while maintaining total performance. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge circumstances to release the design. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the thinking capabilities of the main R1 model to more effective architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a procedure of training smaller, more effective models to imitate the habits and reasoning patterns of the bigger DeepSeek-R1 model, utilizing it as a teacher model.

You can release DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we suggest releasing this design with guardrails in place. In this blog site, we will utilize Amazon Bedrock Guardrails to present safeguards, avoid harmful content, and evaluate models against key safety criteria. At the time of writing this blog, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can create multiple guardrails tailored to various use cases and use them to the DeepSeek-R1 model, enhancing user experiences and standardizing security controls throughout your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 design, you need access to an ml.p5e instance. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and verify you're utilizing ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are deploying. To request a limit boost, produce a limit boost demand and connect to your account group.

Because you will be releasing this model with Amazon Bedrock Guardrails, make certain you have the appropriate AWS Identity and Gain Access To Management (IAM) consents to use Amazon Bedrock Guardrails. For guidelines, see Set up permissions to use guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails permits you to present safeguards, avoid damaging content, and assess designs against essential safety criteria. You can implement security steps for the DeepSeek-R1 design using the Amazon Bedrock ApplyGuardrail API. This permits you to apply guardrails to assess user inputs and model actions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.

The general flow includes the following actions: First, the system gets an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the model for inference. After getting the model's output, another guardrail check is applied. If the output passes this final check, it's returned as the outcome. However, if either the input or output is intervened by the guardrail, a message is returned indicating the nature of the intervention and whether it occurred at the input or output stage. The examples showcased in the following sections show reasoning using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized structure designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following actions:

1. On the Amazon Bedrock console, choose Model brochure under Foundation models in the navigation pane. At the time of composing this post, you can use the InvokeModel API to conjure up the model. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for links.gtanet.com.br DeepSeek as a company and select the DeepSeek-R1 design.

The design detail page supplies necessary details about the design's abilities, pricing structure, and implementation standards. You can discover detailed usage guidelines, consisting of sample API calls and code bits for integration. The model supports different text generation tasks, consisting of material creation, code generation, and question answering, using its reinforcement learning optimization and CoT reasoning abilities. The page also consists of implementation choices and licensing details to help you begin with DeepSeek-R1 in your applications. 3. To start using DeepSeek-R1, pick Deploy.

You will be triggered to configure the deployment details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, get in an endpoint name (in between 1-50 alphanumeric characters). 5. For Variety of instances, go into a number of circumstances (in between 1-100). 6. For Instance type, select your instance type. For engel-und-waisen.de optimum performance with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is suggested. Optionally, you can set up innovative security and facilities settings, consisting of virtual personal cloud (VPC) networking, service function permissions, and encryption settings. For a lot of utilize cases, the default settings will work well. However, for production implementations, you may desire to review these settings to align with your company's security and compliance requirements. 7. Choose Deploy to begin using the model.

When the release is total, you can check DeepSeek-R1's capabilities straight in the Amazon Bedrock play ground. 8. Choose Open in play ground to access an interactive interface where you can explore different prompts and change model criteria like temperature and maximum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat template for optimal results. For instance, material for reasoning.

This is an outstanding method to explore the design's thinking and bio.rogstecnologia.com.br text generation abilities before incorporating it into your applications. The playground provides instant feedback, assisting you understand how the model reacts to various inputs and letting you tweak your prompts for optimum results.

You can rapidly test the model in the playground through the UI. However, to conjure up the released design programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.

Run reasoning using guardrails with the deployed DeepSeek-R1 endpoint

The following code example demonstrates how to carry out inference utilizing a deployed DeepSeek-R1 design through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have created the guardrail, use the following code to carry out guardrails. The script initializes the bedrock_runtime client, configures inference criteria, and sends a demand to create text based on a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML services that you can deploy with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your use case, with your information, and release them into production using either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart uses two practical approaches: utilizing the user-friendly SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's check out both methods to help you pick the method that finest fits your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to deploy DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, choose Studio in the navigation pane. 2. First-time users will be triggered to produce a domain. 3. On the SageMaker Studio console, choose JumpStart in the navigation pane.

The model browser displays available designs, with details like the supplier name and design abilities.

4. Search for DeepSeek-R1 to see the DeepSeek-R1 design card. Each design card shows essential details, including:

- Model name

  • Provider name
  • Task classification (for example, Text Generation). Bedrock Ready badge (if appropriate), indicating that this model can be signed up with Amazon Bedrock, allowing you to utilize Amazon Bedrock APIs to conjure up the design

    5. Choose the design card to view the model details page.

    The model page includes the following details:

    - The design name and supplier details. Deploy button to release the design. About and Notebooks tabs with detailed details

    The About tab consists of essential details, such as:

    - Model description.
  • License details.
  • Technical requirements.
  • Usage guidelines

    Before you deploy the design, it's recommended to evaluate the model details and license terms to verify compatibility with your use case.

    6. Choose Deploy to proceed with release.

    7. For Endpoint name, use the automatically created name or develop a custom-made one.
  1. For Instance type ¸ choose an instance type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, go into the number of circumstances (default: 1). Selecting proper instance types and counts is vital for pipewiki.org expense and efficiency optimization. Monitor your deployment to adjust these settings as needed.Under Inference type, Real-time inference is picked by default. This is optimized for sustained traffic and low latency.
  3. Review all setups for precision. For this design, we highly recommend sticking to SageMaker JumpStart default settings and making certain that network isolation remains in location.
  4. Choose Deploy to release the design.

    The deployment process can take several minutes to complete.

    When deployment is complete, your endpoint status will change to InService. At this moment, the design is ready to accept inference requests through the endpoint. You can keep an eye on the deployment development on the SageMaker console Endpoints page, which will show relevant metrics and status details. When the release is total, you can invoke the model utilizing a SageMaker runtime client and integrate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To get going with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to install the SageMaker Python SDK and make certain you have the essential AWS authorizations and environment setup. The following is a detailed code example that shows how to release and utilize DeepSeek-R1 for inference programmatically. The code for deploying the model is supplied in the Github here. You can clone the note pad and range from SageMaker Studio.

    You can run additional demands against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail utilizing the Amazon Bedrock console or the API, and implement it as revealed in the following code:

    Clean up

    To prevent unwanted charges, finish the steps in this section to tidy up your resources.

    Delete the Amazon Bedrock Marketplace implementation

    If you deployed the design using Amazon Bedrock Marketplace, total the following steps:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, choose Marketplace implementations.
  5. In the Managed implementations area, locate the endpoint you wish to delete.
  6. Select the endpoint, and on the Actions menu, choose Delete.
  7. Verify the endpoint details to make certain you're erasing the appropriate release: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you deployed will sustain expenses if you leave it running. Use the following code to delete the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, wiki.dulovic.tech we checked out how you can access and release the DeepSeek-R1 design utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to begin. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Beginning with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI business develop ingenious services using AWS services and accelerated calculate. Currently, he is concentrated on establishing techniques for fine-tuning and optimizing the inference performance of big language designs. In his leisure time, Vivek takes pleasure in treking, seeing motion pictures, and trying various cuisines.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is a Specialist Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads item, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is enthusiastic about building solutions that assist consumers accelerate their AI journey and unlock company worth.